
1 Iterative Solution of Elliptic PDEs

In the previous exercises, we have worked with partial differential equations
(PDEs) known as evolution equations. They are called evolution equations
because of time dependent terms of the form ∂u

∂t . These partial derivatives with
respect to time allow the PDEs to change or evolve in time. To numerically solve
an evolution equation, it is necessary to advance a given initial state forward in
time. For the current exercise, we will consider non-evolution equations such as
the Laplace equation uxx+uyy = 0 and the Poisson equation uxx+uyy = f(x, y).
Notice the absence of any explicit time dependence. Problems of this type
are also known as elliptic boundary value problems. A boundary value problem
(BVP) is a PDE that has no initial condition, but rather must satisfy a set
condition at the boundary.

Lets consider a 1-D toy example posed on the interval 0 ≤ x ≤ L,

uxx = f(x) , u(0) = G and u(L) = H. (1)

The discrete problem is constructed by the following steps:

1. Construct a uniform grid of N + 1 points covering 0 ≤ x ≤ L. Let
∆x = L/N , then xi = (iL)/N for i = 0, . . . , N .

2. Replace the second derivative in (1) with the standard second order cen-
tered difference, where ui = u(xi) and fi = f(xi), then

ui+1 − 2ui + ui−1

∆x2
= fi i = 1, . . . , N − 1. (2)

Notice that the limits of (2) exclude the boundary points x0 and xN .
This is because the boundary points, by definition, are fixed; u0 = G and
uN = H.

As an illustration of (2), let N = 5, then

u2 − 2u1 + u0 = ∆x2 f1

u3 − 2u2 + u1 = ∆x2 f2

u4 − 2u3 + u2 = ∆x2 f3

u5 − 2u4 + u3 = ∆x2 f4

(3)

The system of equations in (3) can be recast as a linear matrix problem of the
form Au = f . Explicitly this is

1
∆x2


−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2




u1

u2

u3

u4

 =


(f1 −G)

(f2)
(f3)

(f4 −H)

 (4)

To solve for u, the matrix (A), on the left side of (4), must to be inverted. As
N increases, the matrix equation (4) becomes very sparse. Because of this, a
direct inversion of the matrix A is very inefficient. The preferred method is an
iterative solver.

1



1.1 Iterative Solvers

An iterative matrix solver is one in which a first approximation of the solution is
used to calculate the the second and subsequent approximations. The iterative
procedure is said to converge if the difference between consecutive approxima-
tions diminishes.

Consider the example in (4)

u2 − 2u1 = ∆x2(f1)−G

u3 − 2u2 + u1 = ∆x2(f2)

u4 − 2u3 + u2 = ∆x2(f3)

−2u4 + u3 = ∆x2(f4)−H

(5)

Taking each row of (5), and solving for the u of that row provides

u1 = −1
2
(
∆x2f1 − u2 −G

)
u2 = −1

2
(
∆x2f2 − u1 − u3

)
u3 = −1

2
(
∆x2f3 − u2 − u4

)
u4 = −1

2
(
∆x2f4 − u3 −H

)
(6)

Jacobi Method: Denote each approximation by a superscript, thus the first
approximation of u1 is u

(1)
1 , the second is u

(2)
1 , and the kth is u

(k)
1 . There-

fore the first iteration is

u
(1)
1 = −1

2
(
∆x2f1 − u2 −G

)
u

(1)
2 = −1

2
(
∆x2f2 − u1 − u3

)
u

(1)
3 = −1

2
(
∆x2f3 − u2 − u4

)
u

(1)
4 = −1

2
(
∆x2f4 − u3 −H

)
(7)

where ui (with no superscript) is the first guess needed to initialize the
iterative scheme. The second iteration is

u
(2)
1 = −1

2
(
∆x2f1 − u

(1)
2 −G

)
u

(2)
2 = −1

2
(
∆x2f2 − u

(1)
1 − u

(1)
3

)
u

(2)
3 = −1

2
(
∆x2f3 − u

(1)
2 − u

(1)
4

)
u

(2)
4 = −1

2
(
∆x2f4 − u

(1)
3 −H

)
(8)

2



Notice that the right hand side of the second iteration depends only on
first iteration terms. The k+1th iteration is

u
(k+1)
1 = −1

2
(
∆x2f1 − u

(k)
2 −G

)
u

(k+1)
2 = −1

2
(
∆x2f2 − u

(k)
1 − u

(k)
3

)
u

(k+1)
3 = −1

2
(
∆x2f3 − u

(k)
2 − u

(k)
4

)
u

(k+1)
4 = −1

2
(
∆x2f4 − u

(k)
3 −H

)
(9)

Gauss-Seidel Method: In this method the new iterate values are used as they
become available. In the Gauss-Seidel method, the right hand side of the
equations depends on both the current and previous iterates. This differs
from the Jacobi method where all of the terms on right hand side are of
the previous iterate. The first Gauss-Seidel iterate is

u
(1)
1 = −1

2
(
∆x2f1 − u2 −G

)
u

(1)
2 = −1

2
(
∆x2f2 − u

(1)
1 − u3

)
u

(1)
3 = −1

2
(
∆x2f3 − u

(1)
2 − u4

)
u

(1)
4 = −1

2
(
∆x2f4 − u

(1)
3 −H

)
(10)

The second iteration is

u
(2)
1 = −1

2
(
∆x2f1 − u

(1)
2 −G

)
u

(2)
2 = −1

2
(
∆x2f2 − u

(2)
1 − u

(1)
3

)
u

(2)
3 = −1

2
(
∆x2f3 − u

(2)
2 − u

(1)
4

)
u

(2)
4 = −1

2
(
∆x2f4 − u

(2)
3 −H

)
(11)

and the general k+1th iterate

u
(k+1)
1 = −1

2
(
∆x2f1 − u

(k)
2 −G

)
u

(k+1)
2 = −1

2
(
∆x2f2 − u

(k+1)
1 − u

(k)
3

)
u

(k+1)
3 = −1

2
(
∆x2f3 − u

(k+1)
2 − u

(k)
4

)
u

(k+1)
4 = −1

2
(
∆x2f4 − u

(k+1)
3 −H

)
(12)

3



Notice that the terms on the right hand side are both kth and k+1th

iterates. The first equation contains only terms from the kth iterate. The
second equation contains one term, the first term, from the new k+1th

iterate. The remaining terms are from the kth iterate. The third equation
contains two terms, the first and second, from the new k+1th iterate. The
remaining terms are from the kth iterate. The ith equation contains i−1th

terms, the first i− 1 terms, from the new k+1th iterate. The remaining
terms are from the kth iterate. For the general case of M equations,

u
(k+1)
i = −1

2

∆xfi −
i−1∑
j=1

aiju
(k+1)
j −

M∑
j=i+1

aiju
(k)
j

 (13)

where the general coefficients aij have replaced the explicit values.

Successive over-relaxation Method (SOR) Add and subtract u
(k)
i to the

right side of the ith Gauss-Seidel equation (12). The result looks like

u
(k+1)
1 = u

(k)
1 − 1

2

[
∆x2f1 + 2u

(k)
1 − u

(k)
2 −G

]
u

(k+1)
2 = u

(k)
2 − 1

2

[
∆x2f2 + 2u

(k)
2 − u

(k+1)
1 − u

(k)
3

]
u

(k+1)
3 = u

(k)
3 − 1

2

[
∆x2f3 + 2u

(k)
3 − u

(k+1)
2 − u

(k)
4

]
u

(k+1)
4 = u

(k)
4 − 1

2

[
∆x2f4 + 2u

(k)
4 − u

(k+1)
3 −H

]
(14)

The expressions within the square brackets are corrections to u
(k)
i . Under

certain circumstances, convergence can be accelerated by increasing the
size of the correction term. This is the difference between the SOR and
Gauss-Seidel methods. Consider an acceleration parameter (often called
a relaxation factor) ω, which is in the range 1 < ω < 2. Then the SOR
iteration is defined as

u
(k+1)
1 = u

(k)
1 − ω

2

[
∆x2f1 −G + 2u

(k)
1 − u

(k)
2

]
u

(k+1)
2 = u

(k)
2 − ω

2

[
∆x2f2 − u

(k+1)
1 + 2u

(k)
2 − u

(k)
3

]
u

(k+1)
3 = u

(k)
3 − ω

2

[
∆x2f3 − u

(k+1)
2 + 2u

(k)
3 − u

(k)
4

]
u

(k+1)
4 = u

(k)
4 − ω

2

[
∆x2f4 − u

(k+1)
3 + 2u

(k)
4 −H

]
(15)

The value of ω = 1 gives the Gauss-Seidel iteration. The optimal value of
ω is a function of the the PDE and the grid spacing, but not the boundary
conditions. A common strategy is to search for the optimal ω by trial and
error for a case where the boundary conditions allow an analytical solution.

4



For the general case of M equations,

u
(k+1)
i = u

(k)
i +

ω

aii

∆xfi −
i−1∑
j=1

aiju
(k+1)
j −

M∑
j=i

aiju
(k)
j

 , i = 1, . . . ,M

1.2 Stopping Criteria

The final piece of the iterative solver is to define the stopping criteria. The
stopping criteria determine when enough iterations have been completed. Ide-
ally, two consecutive iterates would be compared. If their maximum difference
decreases, the method converges. For a convergent method, it is sufficient to
iterate until the maximum difference is below a threshold value.

5


